
Research on restoration strategies for the vulnerability of air-rail intermodal transportation networks considering competitive effects
Guihong ZHAO, Jiayu GUO, Can ZOU
Research on restoration strategies for the vulnerability of air-rail intermodal transportation networks considering competitive effects
To investigate the competitive impact of the rapid expansion of high-speed rail on civil aviation and to further enhance the structural stability of the air-rail intermodal transportation network, this study proposes a vulnerability assessment and restoration strategy that incorporates competitive effects. First, based on the dynamic equilibrium relationship between passenger travel demand and transportation supply, an air-rail competition effect index is introduced to improve the network vulnerability assessment model. Second, in response to various attack strategies and failure scenarios, a restoration model is developed with the dual objectives of minimizing both restoration cost and network vulnerability, and is solved using a particle swarm optimization algorithm. Finally, a multi-scenario comparative analysis is conducted using China Eastern Airline-China Railway intermodal network as a case study to determine optimal restoration sequences under different scenarios. The results indicate that incorporating the air-rail competition effect index increases the average node vulnerability index by approximately twofold, significantly improving the identification and accuracy of critical nodes. By classifying city nodes according to their vulnerability levels, 15 severely vulnerable cities, including Shanghai, Nanjing, Guangzhou, Shenzhen, and Xiamen, are identified. Under deliberate attack scenarios, node and regional failure restoration strategies yield the best results, with more balanced traffic distribution, a 23% increase in restoration cost, and more than a twofold improvement in overall network performance.
air-rail integration / competitive effects / network vulnerability / attack strategies / restoration model {{custom_keyword}} /
Tab.1 Grouped regression results for short-distance, medium-distance, and long-distance routes表1 短中长距离路线的分组回归结果 |
参数 | 整体 | 长距离 | 中距离 | 短距离 |
---|---|---|---|---|
常数 | -9.874** | -15.384* | -11.326* | -9.651* |
| 0.618** | 0.740** | 0.620** | 0.638** |
| 0.799** | 1.050** | 1.014** | 0.474** |
| 0.344 | -0.192* | 0.572** | 0.302** |
R 2 | 0.659 | 0.730 | 0.903 | 0.550 |
调整R 2 | 0.648 | 0.707 | 0.891 | 0.496 |
F值 | F(3,93)=59.94 | F(3,35)=31.54 | F(3,25)=77.63 | F(3,25)=10.18 |
p值 | 0.000 | 0.000 | 0.000 | 0.000 |
Tab.2 Undetermined coefficients for comfort indicators and assigned values for safety indicators表2 舒适性指标待定系数和安全性指标取值 |
指标/待定系数 | 民航 | 高铁 |
---|---|---|
| 79 | 59 |
| 0.25 | 0.29 |
| | |
| 0.95 | 0.99 |
Tab.3 Specifications for network attack and failure scenario design表3 网络攻击和失效方案设计具体情况说明 |
攻击策略 | 失效方案 | 方案编码 | 具体情况说明 |
---|---|---|---|
随机攻击 | 节点失效 | C1 | 节点16失效,与该点相连接的路段均失效 |
C2 | 节点26失效,与该点相连接的路段均失效 | ||
C3 | 节点36失效,与该点相连接的路段均失效 | ||
路段失效 | C4 | 连接节点6和节点13的路段失效 | |
C5 | 连接节点25和节点28的路段失效 | ||
C6 | 组合路段失效:连接节点9和节点14的路段及连接节点9和节点23的路段 | ||
区域失效 | C7 | 节点37、41所在区域 | |
C8 | 节点1、3、4、5、6所在区域 | ||
蓄意攻击 | 节点失效 | C9 | 节点平均脆弱性指数最高的节点13失效,与该点相连接的路段均失效 |
区域失效 | C10 | 节点平均脆弱性指数最高的节点所在区域(包括13、14、15、16、18)失效 |
Tab.4 Results of vulnerability classification for intermodal nodes表4 各联运节点脆弱性等级划分结果 |
重度脆弱节点 | 中度脆弱节点 | 轻度脆弱节点 | ||||||
---|---|---|---|---|---|---|---|---|
序号 | 城市 | | 序号 | 城市 | | 序号 | 城市 | |
13 | 上海 | 0.051 7 | 38 | 贵阳 | 0.024 1 | 12 | 哈尔滨 | 0.010 7 |
1 | 北京 | 0.045 1 | 2 | 天津 | 0.023 5 | 11 | 长春 | 0.010 5 |
14 | 南京 | 0.043 8 | 4 | 太原 | 0.019 2 | 43 | 西宁 | 0.010 4 |
41 | 西安 | 0.041 9 | 23 | 青岛 | 0.017 0 | 44 | 银川 | 0.010 4 |
36 | 成都 | 0.041 7 | 22 | 济南 | 0.016 7 | 16 | 宁波 | 0.010 1 |
27 | 广州 | 0.038 4 | 21 | 南昌 | 0.015 3 | 6 | 运城 | 0.009 9 |
28 | 深圳 | 0.038 1 | 10 | 大连 | 0.014 5 | 32 | 柳州 | 0.005 3 |
36 | 重庆 | 0.037 9 | 9 | 沈阳 | 0.014 5 | 35 | 三亚 | 0.004 6 |
26 | 长沙 | 0.037 1 | 18 | 合肥 | 0.014 2 | 29 | 汕头 | 0.004 3 |
39 | 昆明 | 0.032 0 | 17 | 温州 | 0.013 1 | 5 | 大同 | 0.004 1 |
20 | 厦门 | 0.030 3 | 3 | 石家庄 | 0.013 0 | 34 | 海口 | 0.004 0 |
24 | 郑州 | 0.029 2 | 33 | 桂林 | 0.012 8 | 45 | 乌鲁木齐 | 0.002 7 |
25 | 武汉 | 0.028 6 | 19 | 福州 | 0.012 7 | 7 | 呼和浩特 | 0.002 4 |
22 | 济南 | 0.027 7 | 30 | 佛山 | 0.011 9 | 8 | 鄂尔多斯 | 0.002 3 |
15 | 杭州 | 0.025 9 | 42 | 兰州 | 0.011 7 | 40 | 拉萨 | 0.001 7 |
Tab. 5 Explanation of weighting factor test results表5 权重系数测试结果说明 |
权重系数 | 有流量分配的节点序号 | 修复 成本属性 | 脆弱 性能 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 14 | 15 | 16 | 17 | 18 | 24 | 25 | 26 | 27 | |||
0.1 | 0 | 0 | 1 | 8 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0.089 2 | 1.986 4 |
0.5 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 0.089 9 | 0.858 0 |
0.9 | 0 | 0 | 0 | 6 | 4 | 4 | 0 | 0 | 0 | 1 | 0 | 0.101 5 | 0.929 3 |
Tab.6 Specifications for randomized attack node failure restoration method表6 随机攻击节点修复方案具体情况说明 |
节点失效方案 | 有流量分配的节点序号 | 修复成本属性 | 修复前脆弱性能 | 修复后脆弱性能 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 13 | 14 | 15 | 17 | 18 | 27 | 28 | 29 | 37 | 38 | 39 | 41 | 42 | ||||
C1 | 1 | 3 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.024 7 | 0.541 8 | 0.213 0 |
C2 | 0 | 3 | 2 | 1 | 0 | 0 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0.054 1 | 0.429 3 | 0.279 4 |
C3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 2 | 1 | 0.069 4 | 0.493 7 | 0.383 9 |
Tab.7 Specifications for randomized attack line failure restoration method表7 随机攻击线路修复方案具体情况说明 |
线路失效方案 | 有流量分配的节点序号 | 修复成本 属性 | 修复前 脆弱性能 | 修复后 脆弱性能 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 4 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 22 | 24 | 26 | 27 | 29 | 30 | ||||
C4 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.064 5 | 0.442 5 | 0.201 2 |
C5 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 2 | 4 | 2 | 2 | 0.047 1 | 0.326 4 | 0.235 7 |
C6 | 1 | 0 | 0 | 3 | 2 | 2 | 2 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0.059 4 | 0.535 7 | 0.334 5 |
Tab. 8 Specifications for randomized attack regional failure restoration method表8 随机攻击区域修复方案具体情况说明 |
区域失效方案 | 有流量分配的节点序号 | 修复成本 属性 | 修复前 脆弱性能 | 修复后 脆弱性能 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 7 | 8 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 36 | 38 | 41 | 42 | 43 | 44 | ||||
C7 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 2 | 2 | 1 | 5 | 3 | 0 | 3 | 1 | 1 | 0.070 4 | 0.941 8 | 0.686 5 |
C8 | 5 | 3 | 1 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 3 | 2 | 0.093 0 | 0.829 3 | 0.495 0 |
Tab. 9 Specifications for deliberate attack node failure restoration method表9 蓄意攻击节点修复方案具体情况说明 |
节点失效方案 | 有流量分配的节点序号 | 修复成本属性 | 修复前 脆弱性能 | 修复后 脆弱性能 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 14 | 15 | 16 | 17 | 18 | 24 | 25 | 26 | 27 | ||||
C9 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 0.084 5 | 2.039 0 | 1.336 5 |
Tab. 10 Specifications for deliberate attack regional failure restoration method表10 蓄意攻击区域修复方案具体情况说明 |
区域失效方案 | 有流量分配的节点序号 | 修复成本属性 | 修复前 脆弱性能 | 修复后 脆弱性能 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 17 | 19 | 20 | 21 | 22 | 24 | 25 | 26 | 27 | 28 | ||||
C10 | 3 | 3 | 4 | 4 | 3 | 2 | 3 | 3 | 2 | 3 | 1 | 0.060 8 | 2.193 5 | 0.885 0 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
冯霞, 贾宏璨. 考虑节点失效和边失效的航空网络鲁棒性[J]. 北京交通大学学报, 2021, 45(5): 84-92.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
路庆昌, 崔欣, 谢驰, 等. 城市轨道交通网络关键站点识别方法对比与分析[J]. 北京交通大学学报, 2022, 46(3): 18-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王亚风, 黄勇. 基于动态可靠性评价的区域铁路网规划优化: 以成渝城市群为例[J]. 中国安全科学学报, 2019, 29(5): 97-104.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
隋东, 康金霞. 基于复杂网络理论的中国航路网络抗毁性分析[J]. 哈尔滨商业大学学报(自然科学版), 2016, 32(3): 295-302.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
王永岗, 王龙健, 刘志岗, 等. 多模式复合交通网脆弱性测度[J]. 交通运输工程学报, 2023, 23(1): 195-207.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
叶青. 城市轨道交通网络脆弱性分析与客流协同控制研究[D]. 成都: 西南交通大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
刘琳. 最大化网络可靠度导向的公路修复方案优化[D]. 大连: 大连海事大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
李兆隆, 金淳, 胡畔, 等. 基于弹复性的交通网络应急恢复阶段策略优化[J]. 系统工程理论与实践, 2019, 39(11): 2828-2841.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
张洁斐, 任刚, 马景峰, 等. 基于韧性评估的地铁网络修复时序决策方法[J]. 交通运输系统工程与信息, 2020, 20(4): 14-20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
国家统计局. 国家数据[EB/OL]. [2024-10-02].
National Bureau of Statisties. National data[EB/OL]. [2024-10-02].in Chinese)
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
Official Aviation Guide. OAG analyser[EB/OL]. [2024-10-02].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
罗海秀, 赵海兴, 肖玉芝, 等. 基于超图的公交超网络拓扑特性及鲁棒性分析[J]. 西南大学学报(自然科学版), 2021, 43(10): 181-191.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
尹若伊. 基于合理市场分配的空铁联运定价方法研究[D]. 北京: 北京交通大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
苗雨. 可靠性约束下的城际综合交通网络脆弱性评估[D]. 上海: 上海交通大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
徐凤, 朱金福, 陈丹. 东航空铁联运双层加权网络的关键节点识别与抗毁性分析[J]. 铁道运输与经济, 2023, 45(1): 93-100.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
冯茜. 基于改进粒子群算法的多目标优化及其应用[D]. 北京: 北京科技大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
朱鸿国. 公铁模式下的区域城际旅客出行链问题研究[D]. 西安: 长安大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |