
Dynamic reliability analysis for fatigue strength of aluminum alloy welded bodies for EMU
Yaohui LU, Mingjun JIANG, Qiushi WANG, Yadong ZHANG, Yueheng XIANYU, Shengchang ZHU
Dynamic reliability analysis for fatigue strength of aluminum alloy welded bodies for EMU
The welded seams of the rolling stock body are subjected to complex multi-axis random loads during service. To address the issue of dynamic fatigue reliability assessment, a dynamic stress-strength interference model is established for precise calculation in this paper. First, the vertical and longitudinal load spectra for the intermediate car body are compiled, and an agent model method is employed to transform the multi-axis stochastic loads acting on the car body into dynamic structural stresses at the weld seams. Second, the equivalent structural stress range for the welded joints of the car body is adjusted using the rainflow counting method, and the stress probability distribution is obtained by fitting a two-parameter Weibull distribution. Finally, the strength data are derived from the Stress-Number of cycles (main S-N) curve of aluminum alloy welded joints, and a dynamic stress-strength interference model is established by integrating a damage-based strength degradation model with the stress probability distribution function and the probability density function. This model is used to study the fatigue strength reliability of the dynamically changing car body. The results indicate that the fatigue strength reliability of the critical parts of the car body is initially high but gradually decreases as the operating mileage increases. Over 14 million kilometers of service, the fatigue strength reliability of the lap weld, located near the vertical load input position of the underframe, decreases the most, reaching 0.116 5. The failure rate of the critical points of the car body first decreases and then increases with the increase in operating mileage, exhibiting the characteristics of the bathtub curve, which includes an early failure period followed by a wear-out failure period. The polynomial fitting method for calculating the dynamic stresses of large-scale vehicle body structures proves to be both feasible and efficient. This approach can serve as a reference for the operation, maintenance, and safety and reliability assessment of the car body.
vehicle engineering / welded car body / equivalent structural stress / strength degradation / dynamic reliability {{custom_keyword}} /
Tab.1 Main dynamic parameters of the vehicle system表 1 车辆系统动力学模型主要参数 |
参数名称 | 取值 | 参数名称 | 取值 |
---|---|---|---|
车体整备质量/t | 38.978 | 构架质量/kg | 2 200 |
车体点头惯量/(t·m2) | 1 905.3 | 构架点头惯量/(kg·m2) | 1 233 |
车体侧滚惯量/(t·m2) | 125.9 | 构架侧滚惯量/(kg·m2) | 1 236 |
车体摇头惯量/(t·m2) | 1 797.9 | 构架摇头惯量/(kg·m2) | 2 336 |
枕梁质量/kg | 753 | 转臂质量/kg | 66.7 |
枕梁点头惯量/(kg·m2) | 60 | 转臂点头惯量/(kg·m2) | 2 |
枕梁侧滚惯量/(kg·m2) | 474 | 转臂侧滚惯量/(kg·m2) | 0.3 |
枕梁摇头惯量/(kg·m2) | 518 | 转臂摇头惯量/(kg·m2) | 2 |
轮对质量/ kg | 1 517 | 定距/mm | 17 375 |
轮对点头惯量/(kg·m2) | 118 | 轴距/mm | 2 500 |
轮对侧滚惯量/(kg·m2) | 693 | 车轮滚动圆横向跨距/mm | 1 493 |
轮对摇头惯量/(kg·m2) | 693 | 车轮滚动圆直径/mm | 920 |
一系横向跨距/mm | 2 000 | 二系横向跨距/mm | 1 900 |
Tab.2 Load data for “B” and “A” ends and longitudinal coupler表2 一、二位端及纵向车钩载荷 (kN) |
载荷名称 | 最大值 | 均值 | 最小值 |
---|---|---|---|
一位端左侧载荷 | 114.0 | 112.1 | 110.2 |
一位端右侧载荷 | 114.6 | 112.4 | 110.2 |
二位端左侧载荷 | 114.7 | 112.1 | 109.3 |
二位端右侧载荷 | 115.0 | 112.4 | 109.4 |
纵向车钩载荷 | 67.3 | 0.9 | -67.3 |
Tab.3 21 Independent loading conditions of the vehicle body表3 车体21个独立载荷工况 (kN) |
工况编号 | 一位端左侧空气簧 | 一位端右侧空气簧 | 二位端左侧空气簧 | 二位端右侧空气簧 | 车钩 载荷 |
---|---|---|---|---|---|
1 | 112.1 | 110.2 | 109.3 | 112.4 | 0.9 |
2 | 112.1 | 114.6 | 112.1 | 112.4 | 67.3 |
3 | 112.1 | 114.6 | 112.1 | 109.4 | 0.9 |
4 | 112.1 | 112.4 | 112.1 | 115.0 | -67.3 |
5 | 110.2 | 112.4 | 112.1 | 112.4 | 67.3 |
6 | 112.1 | 112.4 | 112.1 | 112.4 | 0.9 |
7 | 112.1 | 112.4 | 109.3 | 112.4 | -67.3 |
8 | 112.1 | 110.2 | 112.1 | 112.4 | 67.3 |
9 | 112.1 | 112.4 | 114.7 | 112.4 | -67.3 |
10 | 110.2 | 110.2 | 112.1 | 112.4 | 0.9 |
11 | 112.1 | 112.4 | 114.7 | 115.0 | 0.9 |
12 | 114.0 | 112.4 | 112.1 | 112.4 | -67.3 |
13 | 112.1 | 114.6 | 112.1 | 115.0 | 0.9 |
14 | 112.1 | 110.2 | 112.1 | 112.4 | -67.3 |
15 | 112.1 | 110.2 | 112.1 | 115.0 | 0.9 |
16 | 110.2 | 112.4 | 109.3 | 112.4 | 0.9 |
17 | 114.0 | 112.4 | 112.1 | 109.4 | 0.9 |
18 | 114.0 | 112.4 | 109.3 | 112.4 | 0.9 |
19 | 114.0 | 110.2 | 112.1 | 112.4 | 0.9 |
20 | 110.2 | 112.4 | 112.1 | 109.4 | 0.9 |
21 | 114.0 | 112.4 | 112.1 | 115.0 | 0.9 |
Fig.9 Structural stress range and weld seam location at subframe edge beams and floor profiles for Condition 5图9 工况5下底架边梁和地板型材处焊缝及其结构应力范围 |
Tab.4 Parameters of the probability density function for the equivalent structural stress range表4 等效结构应力范围概率密度函数参数 |
关注点 | 尺度参数 | 形状参数 |
---|---|---|
1 | 0.124 | 0.868 |
2 | 0.136 | 0.792 |
3 | 0.230 | 0.766 |
4 | 0.436 | 0.917 |
5 | 0.131 | 0.731 |
6 | 0.256 | 0.891 |
Tab.5 Fatigue strength values at different standard deviations表5 不同标准偏差下的疲劳强度值 |
标准偏差 | 疲劳强度 | 对数疲劳强度 |
---|---|---|
| 74.40 | 4.31 |
| 60.57 | 4.10 |
| 49.31 | 3.90 |
0 | 40.14 | 3.69 |
| 32.68 | 3.49 |
| 26.61 | 3.28 |
| 21.66 | 3.08 |
Fig.14 Dynamic reliability of fatigue strength at critical locations图14 关注点疲劳强度动态可靠度 |
Tab.6 Reliability of critical locations at different operating mileages表6 关注点不同运行里程的可靠度 |
关注点编号 | 运行里程×106/km | ||||
---|---|---|---|---|---|
1 | 2 | 5 | 9 | 14 | |
1 | 0.996 3 | 0.994 8 | 0.992 1 | 0.989 5 | 0.987 1 |
2 | 0.997 2 | 0.996 4 | 0.994 8 | 0.993 2 | 0.991 4 |
3 | 0.978 3 | 0.968 1 | 0.948 0 | 0.927 0 | 0.905 6 |
4 | 0.966 6 | 0.953 4 | 0.929 1 | 0.906 1 | 0.883 5 |
5 | 0.989 8 | 0.984 8 | 0.974 9 | 0.965 7 | 0.957 1 |
6 | 0.993 6 | 0.991 3 | 0.987 2 | 0.983 2 | 0.979 9 |
1 |
马思群, 谷理想, 袁永文, 等. 焊接缺陷对动车组铝合金车体疲劳寿命影响研究[J]. 铁道学报, 2014, 36(2): 42-48.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
刘俊杰, 卢耀辉, 党林媛, 等. 基于FAD的铝合金车体焊接缺陷安全性评价方法研究[J]. 装备环境工程, 2018, 15(12): 98-103.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
胡启国, 庹奎, 罗天洪, 等. 基于Monte Carlo法的应力-强度总体干涉模型建立[J]. 机械设计, 2015, 32(8): 26-30.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
骆训雕, 刘赣华. 基于疲劳失效的行星齿轮减速器时变可靠性分析[J]. 机械传动, 2024, 48(1): 99-104.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
赵智堂, 卢耀辉, 张德文, 等. 高速列车铝合金车体强度可靠性安全系数分析方法[J]. 机械强度, 2019, 41(2): 340-348.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
杜雪松, 楼嘉彬, 黄玉成, 等. 考虑强度退化与失效相关性的RV减速器动态可靠性分析[J]. 机械传动, 2020, 44(2): 98-103.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
路志成, 周建星, 崔权维, 等. 基于动力学的风力机齿轮传动系统可靠性研究[J]. 太阳能学报, 2023, 44(9): 397-404.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
何佳乐, 王玉惠, 张浩迪. 高超声速飞行器的非概率可靠性分析[J]. 哈尔滨工业大学学报, 2023, 55(12): 1-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
凡红梅, 唐家银. 基于动态Copula统计拟合应力-强度相关性干涉的可靠性模型[J]. 机械强度, 2023, 45(2): 373-379.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
高鹏, 谢里阳. 考虑强度退化的零件及系统可靠性分析[J]. 机械工程学报, 2010, 46(24): 162-167.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
张永亮. 基于跟踪测试的高速动车组构架载荷特性研究[D]. 北京: 北京交通大学, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
CEN. Railway applications-Structural requirements of railway vehicle bodies: BS EN 12663-1:2010 [S]. Brussels: European Committee for Stand-ardization, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
郭忠涛. CRH2C型动车组载荷谱及衍化规律研究[D]. 北京: 北京交通大学, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
王翔. 高速动车组车体关键位置疲劳裂纹扩展研究[D]. 北京: 北京交通大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
兆文忠, 李向伟, 董平沙. 焊接结构抗疲劳设计理论与方法[M]. 北京: 机械工业出版社, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
路承功, 魏智强, 乔宏霞, 等. 基于3参数Weibull分布钢筋混凝土盐腐蚀环境中可靠性寿命分析[J]. 工程科学学报, 2021, 43(4): 512-520.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
韩庆华, 王鑫, 芦燕, 等. 基于三参数威布尔分布模型的铸钢及对接焊缝腐蚀疲劳寿命评估方法[J]. 建筑结构学报, 2021, 42(2): 213-220.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |