
碳纤维复合材料超大开度门结构设计与仿真
梁永廷, 于文学, 熊芯, 乔珂
碳纤维复合材料超大开度门结构设计与仿真
Design and simulation of ultra-large loading door structure made of carbon fiber composite
为提升货运动车组大尺寸货物快速装卸效率和满足节能减排需求,设计一种基于碳纤维复合材料的超大开度车门及自动化开闭装置,以减轻整车重量、降低能耗,适应大开度车门高强度、高刚度、低重量要求.首先,借鉴航空、铁路货运等成熟应用案例进行碳纤维复合材料车门的结构设计.然后,采用HyperWorks商用仿真软件对门体结构设计进行数值模拟研究,通过深入分析纵梁、环梁、蒙皮结构对碳纤维复合材料超大开度门扇刚度、强度的影响,进一步优化门扇的结构设计和材料铺层.最后,设计大型测试工装,加载模拟内外部气压的载荷进行大开度车门的结构测试,验证超大开度车门的力学性能和锁紧性能.研究结果表明:板梁结构采用7根环梁和16个四周锁紧装置结构的一体超大门扇可满足其强度和刚度的设计标准,且工艺具有可操作性,优化效果显著,符合实际技术要求.
To improve the efficiency of loading and unloading large-sized cargo in freight train EMUs operations and meet energy-saving and emission-reduction goals, this study proposes the design of a super-large opening door made from carbon fiber composite materials, along with an automated opening and closing mechanism. This design aims to reduce vehicle weight and energy consumption while meeting the high strength, high stiffness, and low weight requirements of large-opening doors. First, the structural design of the carbon fiber composite door draws on mature application cases from aviation and rail freight transportation. Then, the HyperWorks commercial simulation software is used to conduct a numerical simulation study on the structural design of the door body. Through an in-depth analysis of the effects of longitudinal beams, ring beams, and skin structure on the stiffness and strength of the carbon fiber composite ultra-large loading door, the structural design and material layup are optimized. Finally, a large-scale test rig is designed and loaded to simulate internal and external air pressure loads for structural testing, verifying the mechanical properties and locking performance of the ultra-large loading door. The results indicate that the integration of 7 ring beams and 16 peripheral locking devices within a plate-beam structure of the door leaf effectively satisfies the requisite strength and stiffness criteria. Furthermore, the manufacturing process has been demonstrated to be feasible and operational, yielding significant optimization outcomes and meeting practical technical specifications.
高速动车组车门 / 碳纤维车门 / 复合材料 / 有限元仿真 / 优化设计 {{custom_keyword}} /
high-speed train doors / carbon fibre plastic doors / composite materials / finite element simulation / optimization design {{custom_keyword}} /
表1 门扇系统结构及载荷工况说明Tab.1 Description of door leaf system structure and load conditions |
序号 | 结构类型 | 对应图8中的编号 | 载荷工况说明 |
---|---|---|---|
1 | 两侧锁闭机构 | L2、L4、R2、R4 | 外压工况承载 |
2 | 顶部锁闭机构 | T1~T7 | 内外压工况承载 |
3 | 两侧限位机构 | L1、L3、L5、R1、R3、R5 | 内压工况承载 |
4 | 承重机构 | B1~B7 | 内外压工况承载 |
表2 复合材料力学参数Tab.2 Mechanical parameters of composite |
材料 | UD100 | LT400 | PU-单向材料 |
---|---|---|---|
密度/(g/cm3) | 1.52 | 1.52 | 1.62 |
泊松比 | 0.32 | 0.32 | 0.26 |
纵向拉伸强度/MPa | 1 760 | 550 | 2 023 |
纵向压缩强度/MPa | 1 570 | 430 | 1 293 |
横向拉伸强度/MPa | 80 | 479.6 | 46 |
横向压缩强度/MPa | 150.46 | 417 | 193 |
剪切强度/MPa | 98 | 68.9 | 86 |
表3 泡沫及金属材料参数Tab.3 Material parameters of foam and metals |
EP100泡沫材料参数 | 取值 | Al 6061-T6金属材料参数 | 取值 |
---|---|---|---|
密度/(kg/m3) | 100 | 密度/(kg/m3) | 2 700 |
弹性模量/MPa | 105 | 弹性模量/MPa | 69 000 |
剪切模量/MPa | 25 | 屈服强度/MPa | 240 |
拉伸强度/MPa | 1.6 | 泊松比 | 0.33 |
压缩强度/MPa | 1.4 | - | - |
剪切强度/MPa | 0.7 | - | - |
表4 初步结构重量统计 (kg)Tab.4 Preliminary statistics of structural weight |
部件 | 重量 | 部件 | 重量 |
---|---|---|---|
环梁 | 64.5 | 蒙皮顶部增厚区域 | 13.2 |
蒙皮 | 143.5 | 蒙皮底部增厚区域 | 13.2 |
中间加强纵梁 | 47.2 | 总重量 | 281.6 |
图10 内压叠加货物接触工况下最大变形示意Fig.10 Schematic diagram of maximum deformation under internal pressure and cargo contact load case |
表5 基础方案仿真分析结果Tab.5 Simulation analysis results of the basic scheme |
计算工况 | 门扇最大变形/mm | 门扇最大Hashin值 | 安全系数 |
---|---|---|---|
外压工况 | 35.5 | 0.45 | 1.49 |
内压工况 | 40.2 | 0.48 | 1.44 |
表6 不同环梁纵梁布局方案和计算结果Tab.6 Layout schemes and calculation results of different ring beam and longitudinal beam configurations |
方案编号 | 环梁纵梁布局方案 | 布局方案计算结果 | ||
---|---|---|---|---|
纵梁数量 | 环梁数量 | 门扇Hahsin值 | 门扇变形/mm | |
基础方案 | 3 | 5 | 0.252 3 | 35.5 |
方案1 | 5 | 5 | 0.25 | 33.03 |
方案2 | 3 | 7 | 0.143 | 27.52 |
方案3 | 3 | 9 | 0.092 5 | 20.8 |
表7 不同壁板结构方案具体尺寸及计算结果Tab.7 Dimensions and calculation results of different siding structure schemes |
方案编号 | 壁板方案材料尺寸 | 壁板方案计算结果 | |||
---|---|---|---|---|---|
蜂窝厚度/mm | 内蒙皮厚度/mm | 外蒙皮厚度/mm | 门扇Hahsin值 | 门扇变形/mm | |
基础方案 | - | 3.18 | 3.18 | 0.252 3 | 35.500 |
方案2 | 10 | 2.00 | 3.18 | 0.263 0 | 33.760 |
方案3 | 40 | 2.00 | 3.18 | 0.102 0 | 20.324 |
表8 优化前后各部件铺层厚度及占比Tab.8 Layup thickness and proportion of each component before and after optimization |
部件 | 优化前 | 优化后 | ||
---|---|---|---|---|
厚度/mm | 铺层0°、±45°、90°的占比/% | 厚度/mm | 铺层0°、±45°、90°的占比/% | |
环梁 | 6.0 | 40、30、30 | 5.32 | 61.5、23.1、15.4 |
蒙皮 | 4.0 | 41.2、35.3、23.5 | 3.20 | 21.4、42.9、35.7 |
中间加强纵梁 | 3.2 | 43.8、37.5、18.8 | 3.72 | 36.3、52.9、11.8 |
蒙皮顶部增厚区域 | 3.2 | 45、30、25 | 5.20 | 25、50、25 |
蒙皮底部增厚区域 | 3.2 | 45、30、25 | 5.20 | 40、36、24 |
表9 优化前后门扇结构刚度及强度对比Tab.9 Comparison of stiffness and strength before and after optimization of the door leaf structure |
对比项 | 外压工况 | 内压工况 | |||
---|---|---|---|---|---|
变形/mm | Hashin | 变形/mm | Hashin | 重量/kg | |
优化前 | 35.5 | 0.45 | 35.1 | 0.48 | 281 |
优化后 | 24.5 | 0.38 | 25.2 | 0.30 | 278 |
表10 金属锁闭机构强度校核结果Tab.10 Strength check result of the metal locking mechanism |
计算工况 | 应力值/MPa | 安全系数 |
---|---|---|
顶部结构 | 170.00 | 1.41 |
两侧锁闭机构 | 71.00 | 3.40 |
两侧限位机构 | 192.56 | 1.24 |
底部锁闭机构 | 136.44 | 2.84 |
表11 内外压工况仿真试验结果对比Tab.11 Comparison of simulation and test results under internal and external pressure conditions |
点位 | 外压工况 | 内压工况 | ||||
---|---|---|---|---|---|---|
仿真数据 /mm | 试验数据 /mm | 误差 /% | 仿真数据 /mm | 试验数据 /mm | 差异 /% | |
① | 17.24 | 16.05 | 7 | 18.2 | 19.05 | 5 |
② | 6.83 | 6.21 | 9 | 7.58 | 7.21 | 5 |
③ | 19.24 | 16.87 | 12 | 17.48 | 18.01 | 3 |
④ | 13.22 | 10.22 | 23 | 8.71 | 9.65 | 11 |
1 |
谢鸣九.复合材料连接[M].上海:上海交通大学出版社,2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
庄宝诚.试论新型材料在轨道车辆内饰中的应用[J].中国战略新兴产业,2017(48):53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
刘宇,王峰,苏强,等.轻量化复合材料车体设计与分析[J].城市轨道交通研究,2018,21(1):25-29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
章潇慧.先进复合材料轨道交通车辆轻量化发展与思考[J].新材料产业,2019(1):51-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
张配,刘莉,邵千城.CRH380B动车组塞拉门结构原理分析[J].时代汽车,2021(22):163-164.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
蔡继文,贡智兵,陶杨洋.基于ABAQUS的碳纤维复合材料轨道车辆车门设计[J].机械制造与自动化,2020,49(6):124-127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
刘晓波,杨颖.碳纤维增强复合材料在轨道车辆中的应用[J].电力机车与城轨车辆,2015,38(4):72-76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
肖守讷, 江兰馨,蒋维,等. 复合材料在轨道交通车辆中的应用与展望[J]. 交通运输工程学报, 2021,21(1):154-176.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
国家市场监督管理总局,中国国家标准化管理委员会. 轨道交通机车车辆设备冲击和振动试验:GB/T 21563—2018 [S]. 北京:中国标准出版社,2018.
State Administration for Market Regulation, National Standardization Administration. Railway applications-Rolling stock equipment-Shock and vibration tests:GB/T 21563—2018 [S]. Beijing:Standards press of China,2018. (in Chinese)
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
吴菁,胡明勇,章向明,等. 复合材料帽型加筋板等效弯曲刚度[J]. 复合材料学报,2022,39(12):6088-6095.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
国家铁路局. 动车组车体结构强度及试验:TB/T 3451—2016 [S]. 北京:中国铁道出版社,2017.
National railway administration of the people’s republic of China. Strength design and test of body structures of EMU/DMU:TB/T 3451—2016 [S]. Beijing:China Railway publishing house co.,LTD.,2017. (in Chinese)
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |